Square-lattice large-pitch hollow-core photonic crystal fiber
نویسندگان
چکیده
منابع مشابه
Gas Sensor Based on Large Hollow-Core Photonic Bandgap Fiber
One concern in using photonic band-gap fiber (PBGF) as a gas sensor is the response time. In this type of the gas sensors, response time is the time required for gas to diffuse into the hollow-core. So considering a large hollow-core PBGF (HC-PBGF), the response time can be significantly reduced. But in the large HC-PBGF, the fundamental issue is the presence of higher order modes (HOMs). Somet...
متن کاملSquare Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm
In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric split-step Fourier (SSF) and fourth order Runge Kutta (RK4) which is an accurate method to solve the general nonlinear...
متن کاملHollow core photonic crystal fiber as a reusable Raman biosensor.
We report that a single hollow core photonic crystal fiber (HC-PCF) can be used for repetitive characterization of multiple samples by Raman spectroscopy. This was achieved by integrating the HC-PCF to a differential pressure system that allowed effective filling, draining and re-filling of samples into a HC-PCF under identical optical conditions. Consequently, high-quality and reliable spectra...
متن کاملLaser-cooled atoms inside a hollow-core photonic-crystal fiber
We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms of implementation complexity and atom-loading efficiency. The most efficient procedure results in loadin...
متن کاملAn atom interferometer inside a hollow-core photonic crystal fiber
Coherent interactions between electromagnetic and matter waves lie at the heart of quantum science and technology. However, the diffraction nature of light has limited the scalability of many atom-light-based quantum systems. We use the optical fields in a hollow-core photonic crystal fiber to spatially split, reflect, and recombine a coherent superposition state of free-falling 85Rb atoms to r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2008
ISSN: 1094-4087
DOI: 10.1364/oe.16.020626